酷爱读 > 走进不科学 > 第一百四十章 忽悠老贾

苏府。

老苏的书房内。

此时此刻。

一位瘦小但精神头却很足的小老头正端坐在椅子上,如鹰隼般锐利的目光紧紧盯着对坐的王林。

仿佛下一秒,双目中就会放出哉佩利敖光线把王林给biu成渣:

“你便是王林?”

徐云揉了揉脖子后方,叹气道:

“正是小人。”

小老头儿闻言,立时从身上掏出一封信件。

啪!

只见小老头手腕一翻,将它重重的拍在了桌子上:

“此信是你写的?”

徐云张了张嘴,很想说句‘这封信是老爷写的’这种骚话。

但考虑到这样说可能会被吊起来打,自己的人设也不是王蔷那个逗比,因此只好幽幽道:

“没错。。”

“.....”

小老头儿不由眉头一皱,沉声道:

“王林,老夫与你虽只是初见,但看你也不似那等奸诈之人,数算之术也远高于常人,为何偏偏喜欢断章呢?

老夫识得一断章狗...咳咳,断章党,如今他的坟头怕不是已有一丈高了。”

这种问题徐云上辈子已经被问了无数次,因此他压根来不及思考,便一句话条件反射般的脱口而出:

“无他,唯手熟尔。”

小老头儿:

“???”

随后他深吸一口气,将心中的火气强压下去,正色道:

“王林,老夫如今已亲至汴京,剩下的那些内容是不是该给老夫看看了?”

徐云这次倒显得很爽快,从身上取出了一张纸。

摊开,铺平。

按着其中一角,推到了老者...也就是贾宪的面前:

“桐屿先生,余下内容尽数再此,还请过目。”

贾宪眼眸顿时一亮。

只见他迫不及待的拿过纸张,认真的开始看了起来:

“....承接讫余一十三万二千八百六十七一数,数算步骤如下...”

“.....复以次商二十乘下法入廉共三百四十,乘廉入方共四万三千二百尺。”

“....又乘下法入廉共三百六十...其方一、廉二、下三退,如前。”

贾宪一边看一边分析,整个过程丝毫没有借助任何纸笔或者工具,完全就是在心算!

“....上商第三位得数三尺,乘下法入廉共三百六十三,乘廉入方共四万四千二百八十九.....”

“.....命上商三尺除实,适尽,得....”

“立方一面之数。”

看完最后一句话。

贾宪不由闭上眼睛,眉头微皱,似乎在验算着结果。

过了大概一分多钟。

这位看上去脾气有些火爆的小老头缓缓睁开眼,呼出一口浊气,目光复杂的看向徐云:

“术文无误,《九章》之求廉法,又多第三解矣。”

《九章算术》。

这是一部后世小学生都听过的古籍。

但很多人都只是听过它的名,却不知道它为什么叫做《九章算术》。

原因很简单。

因为它一共有九个章节......

没错,就这么简单......

这九个章节分别是方田、粟米、衰分、少广、商功、均输、盈不足、方程及勾股。

其中在《少广》这一章里,最有名的应该就要属于1860867开立方根的过程了。(注:前文居然有人问我少广章是哪个人...)

截止到公元1100年之前,古人都只提出了两种开立方根的解法。

而徐云提出的这种解法,正是此前从未有人发现过的.....

第三解!

同样。

这也是贾宪前半生中,一直想要解开的一个谜题。

但很可惜的是.....

人的精力是有限的。

在发现了三角形的奥秘后,贾宪只能无奈放弃立方根开解的问题,将心思全部投放到了三角领域中。

这就像后世一些网络作家。

原本写着一本一两千均订的书,结果马甲忽然意外出了一本爆款,所以只能无奈将前者咕掉,去写起了后者。

当然了。

徐云肯定是不会干这种事的,他的书大多都只是被封了才会写下一本。

.....这真是个悲伤的故事。

随后贾宪再次深吸一口气,指着信封一角,对徐云道:

“王林,不知信角所画的这些符号,又是何意?”

徐云探过脑袋看了几眼,解释道:

“您说这些啊,这些乃是阿拉伯数字。”

“阿拉伯数字?”

徐云点了点头,继续道:

“此乃西域人发明的一种字符,对标着华夏的一二三四,在书写时会相对简洁一些,桐屿先生倒也可以试着用用。”

阿拉伯数字不像杨辉三角,它们确实是由古天竺人发明的,不属于被埋没的华夏古代成就。

因此徐云倒也没刻意将它们占为己有,毕竟他又不是偷国人。

眼下华夏数算使用较多的,是一种叫做筹码的小工具。

有点类似后世的牙签,长度十几到二十厘米,因此也被称之为算筹。

在计算的时候。

只要把这些牙签摆成不同的样式,便能代表各个数字进行计算。

另外就是有些时候若是没有厕筹,就会用它.....

咳咳。

总而言之。

虽然这种方式比笔算要方面一点,但和阿拉伯数字比起来仍旧有些麻烦。

虽然这玩意儿是古代三哥发明的,但不得不承认,它确实具备肉眼可见的便捷性。

因此经过仔细思量。

徐云最终还是决定先引入阿拉伯数字的概念。

毕竟今后需要的计算量注定不小,有个方便的工具也算是轻松一点,效率能高当然是高点好嘛。

当然了。

虽然贾宪不认识阿拉伯数字和符号,但这并不代表他不明白这些概念:

恰恰相反。

无论是加减乘除还是开平方立方,古代华夏的数学家们早就对此有所研究了。

因此几乎没怎么花时间,贾宪以及一旁的老苏,都很快理解并且接纳了阿拉伯数字。

同时在了解了信件的内容和相关数学概念后,贾宪也算是消了点火,没之前那么暴躁了。

只见他轻咳一声,不动声色的将信件和徐云的纸收好,对徐云道:

“好了,王林,你不惜用这般手段将我这个老头子引到汴京,想必不止是为了介绍阿拉伯数字这么简单吧?”

在古代华夏。

数学圈虽然没有后世的bbs或者贴吧,但在一些比较有地位且有家资的大佬的组织下,地域性的交流还是比较常见的。

甚至在江南地区,还出现了类似数学报的小规模报刊雏形。

这种报刊非常便宜,只要几文钱就能订购,大概一个月印刷一次。

考虑到这个时期的纸张以及运力、印刷成本,这个价钱基本上和赔钱没两样。

总而言之。

徐云若只是想发布自己的成果,只需要通过老苏的关系联系上几位‘编辑’,便可以轻松的将自己的解法公开。

因此很明显。

徐云如此大费周章的将自己‘骗’到汴京,一定有事相求。

徐云对此也没卖关子,只见他稍作沉默,接着朝贾宪拱了拱手,说道:

“此番请桐屿先生前来,确有一要事希望先生能够出手相帮。”

“何事?”

“研究透镜公式。”

贾宪顿时一愣,茫然的眨了眨眼:

“透镜?公式?”

后者还可以理解,但前者是什么鬼?

一旁的老苏见状,当即从袖袋里取出了一枚粗磨过的透镜,递给贾宪:

“就是此物。”

贾宪接过透镜打量了一番,若有所思道:

“似是叆叇,但两侧都要更为饱满一些,不过看材料判断...也似是由玻璃制成的?”

徐云点点头:

“不错。”

贾宪的眼中不由愈发疑惑了起来:

“可它又与公式有何关系呢?”

徐云沉默片刻,说道:

“桐屿先生,小人曾听闻您说过一句话,‘世间杂物千百般,样样皆有内中理’,对否?”

贾宪轻轻点了点头,这句话也算是他人生的一个座右铭:

“不错。”

“那么先生可否想过......我们每日见到的光,也有不为人知的某种理呢?”

贾宪顿时瞳孔一缩,下意识的看向了窗外:

“光?”

徐云想了想,取过纸笔。

画了一个直角边朝右、底边在下的直角三角形。

随后他在每条边上画了几条线,一次标注上了“日月山川、冬青心北”等22个字。

接着再画了个内切圆,同时边写边说道:

“桐屿先生,自圆心圆外纵横取之,可得大小十五形,皆无奇零。”

“三个顶点分别是天、地、乾,天地乾三角形的内切圆圆心称为心。”

“过心的垂直线从上至下分别和三角、内切圆交于日、南、北三点。”

“过心的水平线从左至右分别和三角形、内切圆交于川、东、西三点。”

“过东的垂直线和过南的水平线都是内切圆的切线,它们分别交天地乾三角形于艮、坤、山、月四点,而相交于巽点。”

“乾坤巽艮四者相合,可构成一个正方形。”

“过月的垂直线交东西水平线于青点,交地乾边于泉点。过山的水平线交南北垂直线于朱点,交天乾边于金点。而这两条线相交于泛点。”

“最后过日的水平线交天乾边于旦点,过川的垂直线交地乾边于夕点。”

“以上点数共记22。”

在徐云一开始画图的时候,贾宪的目光还有几分随意。

不知道徐云明明说着光,为什么又要扯到三角形上。

但看着看着。

他的表情便逐渐凝重了几分。

待看到最后。

他的神色只剩下了......

骇然!

作为三角形问题的专家,贾宪在很早很早以前便提出了一个想法...或者说理论:

“勾股弦并而为和,减而为较,等而为变,为乘,为段,自乘为积,为幂。”

这就是赫赫有名的勾股十三图:

指勾(a)、股(b)、弦(c)、勾股较(b-a)、勾弦较(c-a)、股弦较(c-b)、勾股和(a+b)、勾弦和(a+c)、股弦和(b+c)、弦较和(c+(b-a))、弦和和(c+(a+b))、弦和较((a+b)-c)、弦较较(c-(b-a))。

可以这样说。

贾宪已经完备了勾股弦及其和差的所有关系,已经抛开《九章》算题本身,并对勾股问题进行抽象分析了。

而徐云所画的这张图,不但理念上与他极其相近,甚至要比他所提出的概念更为形象和简洁!

看着面容惊骇的贾宪,徐云不由轻呼一口气:

看来自己‘请神’成功了。

看到这儿。

想必很多同学已经明白了徐云所画图的来历了:

没错。

正是《测圆海镜》!

《测圆海镜》。

这是是金元时期的数学家李冶所著的一部数学名作,也就是赫赫有名的天元术。

公元1234年初。

李冶在桐川得到了洞渊的一部算书,内有九客之说。

于是李冶结合洞渊以及贾宪的诸多成果,将勾股容圆归纳成了一部完整的系统。

而且更关键的是。

在《测圆海镜》后,李冶以勾股容圆为基础,提出了半段黄方幂的问题。

是的。

半段黄方幂。

也就是基尔霍夫衍射公式近似定量描述的傍轴近似的.....

雏形!

画好分割线后。

徐云取过老苏的透镜,将它立着放到了所画内切圆的圆心上。

接着指向其中的‘青’字线,对贾宪说道:

“您看。”

只见此时此刻。

受透镜的折射效果影响,镜内外的‘青’字线,赫然出现了一道肉眼可见的偏折!

随后徐云又在青字线外部写了个‘天’,挪开透镜,在内部出现过偏折的青字线上写了个‘地’。

接着又写到:

设青线下端的位置为玄,偏折端为黄。

距离圆形的位置分别为洪与荒。

那么便有:

天=?地。

心北2=玄2+(洪-荒)2+(洪-山心)2。

同时:

(δ/2玄)洪2+黄2远小于圆周率。

(洪+洪)xδ=心北x??(荒+心朱)x?=洪-山心x?。

写完这些,徐云对贾宪说道:

“桐屿先生,此乃小人先辈所传的某种偏折解法,奈何其中几种未知符号以及推导思路却无从得知。

同时此类解法又是制备某物件的必须数据,故而只能请先生前来,希望能助小人一臂之力。”

贾宪沉默片刻,再次看了眼桌面上的透镜,说道:

“王林,《少广》章的第三解乃是老夫夙愿,原本老夫以为死前都无望有人可解,但今日你却给了老夫一个天大的惊喜。

古人云。

朝闻道,夕死可矣。

解惑之情甚重,老夫断不能忘,先前称你为断章狗,也不过是一时气话罢了。

如今哪怕是为还你此情,透镜公式之事,老夫也绝不会推脱分毫。

不过王林。

透镜此物老夫从未涉猎,难以保证定能有所答获,只能尽人事,听天命罢了。

若是无法解开此题,老夫便将家财划分半数与你,以做酬资。”

徐云闻言一愣,额头上顿时冒出了一股冷汗。

妈耶。

这位大佬居然未免也太耿直了吧,合着古代人一言不合都直接送养老金的?

因此他连忙说道:

“桐屿先生言重了,先生愿意帮忙,小人便已感激不尽,筹资之事还请勿要再言。”

贾宪看了他一眼,没有说话,而是转身朝老苏拱了拱手:

“子容兄,可否借用一番纸笔?”

老苏笑着朝自己的老友回了个礼:

“桐屿先生但用无妨。”

贾宪闻言点了点头,走到桌边,拿起纸笔开始了演算。

.......

注:

下午和某个老鸽子聊天,那货准备开新书了,结果发现太久没登录,作家账户的密码忘了,哈哈哈哈

另,这章写的累死我了,纯原创推导....